Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
ChemSusChem ; : e202400066, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656829

RESUMEN

A catalyst-based switchable regioselective C-H activation/annulation of acrylamides with propargyl carbonates has been developed, delivering C5 or C6 alkenyl substituted 2-pyridones. This robust protocol proceeds with a broad substrate scope and good functional group tolerance under redox-neutral reaction conditions. More significantly, this reaction is highly effective with previously challenging unsymmetrical alkynes, including unbiased alkyl-alkyl substituted alkynes, with perfect and switchable regioselectivity. Additionally, mechanistic studies and DFT calculations were performed to shed light on the switchable regioselectivity.

2.
Sci Total Environ ; 927: 172292, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588741

RESUMEN

Trace element pollution has emerged as an increasingly severe environmental challenge owing to human activities, particularly in urban ecosystems. In farmlands, invasive species commonly outcompete native species when subjected to trace element treatments, as demonstrated in experiments with individual invader-native pairs. However, it is uncertain if these findings apply to a wider range of species in urban soils with trace elements. Thus, we designed a greenhouse experiment to simulate the current copper and zinc levels in urban soils (102.29 mg kg-1 and 148.32 mg kg-1, respectively). The experiment involved four pairs of invasive alien species and their natural co-existing native species to investigate the effects of essential trace elements in urban soil on the growth and functional traits of invasive and native species, as well as their interspecific relationship. The results showed that adding trace elements weakened the competitiveness of invasive species. Nonetheless, trace element additions did not change the outcome of competition, consistently favoring invasion successfully. Under trace element addition treatments, invasive species and native species still maintained functional differentiation trend. Furthermore, the crown area, average leaf area and leaf area per plant of invasive species were higher than those of native species by 157 %, 177 % and 178 % under copper treatment, and 194 %, 169 % and 188 % under zinc treatment, respectively. Additionally, interspecific competition enhanced the root growth of invasive species by 21 % with copper treatment and 14 % with zinc treatment. The ability of invasive species to obtain light energy and absorb water and nutrients might be the key to their successful invasion.


Asunto(s)
Especies Introducidas , Contaminantes del Suelo , Oligoelementos , Oligoelementos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Ecosistema , Plantas/efectos de los fármacos , Cobre , Zinc
3.
PLoS One ; 19(4): e0298076, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683792

RESUMEN

Debris flow is a typical natural disaster in the middle reaches of the Dadu River, Southwest China. Field physical model tests were conducted to reveal the mechanism of river blocking by debris flow in the middle reaches of the Dadu River. The dynamic processes of riHver blocking by debris flows were revealed, and based on which three typical river-blocking modes of debris flow are observed, i.e. thrust-type river blocking, mixed-flow-type river blocking and progressive river blocking. The test results showed that the material composition of debris flows plays an important role in the river-blocking mode, only the tests that adopted the mixed soil and gravel exhibited the thrust-type river blocking mode. The material composition has a controlling effect on the thrust-type river-blocking model. Mixed-flow-type river-blocking mode appears most often in the tests with an intersection angle of 60°, because the small intersection angle is conducive to the mixing of the debris flow and the water in the main channel. The debris flows composed of sand tend to block the river with mixed-flow-type river-blocking mode, accounting for 50% of the occurrences in the model tests. The high flow rate and discharge in the main channel and the low flow rate and discharge in the branch channel are the key factors controlling the progressive river-blocking mode. The test results in this study can support the debris flow disaster prevention and mitigation in this area.


Asunto(s)
Modelos Teóricos , Ríos , Movimientos del Agua , China , Desastres Naturales
4.
Sci Rep ; 14(1): 7366, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548896

RESUMEN

Interleukin 12 (IL-12) is a potent immunostimulatory cytokine mainly produced by antigen-presenting cells (e.g., dendritic cells, macrophages) and plays an important role in innate and adaptive immunity against cancers. Therapies that can synergistically modulate innate immunity and stimulate adaptive anti-tumor responses are of great interest for cancer immunotherapy. Here we investigated the lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 (referred to as JCXH-211) for the treatment of cancers. Both local (intratumoral) and systemic (intravenous) administration of JCXH-211 in tumor-bearing mice induced a high-level expression of IL-12 in tumor tissues, leading to modulation of tumor microenvironment and systemic activation of antitumor immunity. Particularly, JCXH-211 can inhibit the tumor-infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). When combined with anti-PD1 antibody, it was able to enhance the recruitment of T cells and NK cells into tumors. In multiple mouse solid tumor models, intravenous injection of JCXH-211 not only eradicated large preestablished tumors, but also induced protective immune memory that prevented the growth of rechallenged tumors. Finally, intravenous injection of JCXH-211 did not cause noticeable systemic toxicity in tumor-bearing mice and non-human primates. Thus, our study demonstrated the feasibility of intravenous administration of JCXH-211 for the treatment of advanced cancers.


Asunto(s)
Liposomas , Nanopartículas , Neoplasias , Ratones , Animales , Interleucina-12/genética , Inmunidad Adaptativa , Inmunoterapia , Administración Intravenosa , Microambiente Tumoral , Línea Celular Tumoral
5.
Adv Mater ; 36(8): e2307839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37812814

RESUMEN

Nanozymes are considered as the promising antimicrobial agents due to the enzyme-like activity for chemo-dynamic therapy (CDT). However, it remains a challenge to develop novel nanozyme systems for achieving stimuli-responsive, and efficient nanozyme catalysis with multimodal synergistic enhancement. In this work, a near-infrared (NIR) plasmonic-enhanced nanozyme catalysis and photothermal performance for effective antimicrobial applications are proposed. A Ti3 C2 MXene/Fe-MOFs composite (MXM) with NIR plasmonic-enhanced CDT combined with photothermal properties is successfully developed by loading metal-organic framework (MOF) nanozymes onto Ti3 C2 MXene. The mechanism of NIR induced localized surface plasmon resonance (LSPR)-enhanced CDT and photothermal therapy (PTT) is well explained through activation energy (Ea ), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), fluorescence analysis experiments, and finite element simulation. It reveals that MXene nanosheets exhibit NIR plasmon exciters and generate hot electrons that can transfer to the surface of Fe-MOFs, promoting the Fenton reaction and enhances CDT. While the photothermal heating of MXene produced by LSPR can also boost the CDT of Fe-MOFs under NIR irradiation. Both in vitro and in vivo experimental results demonstrate that LSPR-induced MXM system has outstanding antimicrobial properties, can promote angiogenesis and collagen deposition, leading to the accelerated wound healing.


Asunto(s)
Antiinfecciosos , Estructuras Metalorgánicas , Neoplasias , Nitritos , Elementos de Transición , Humanos , Estructuras Metalorgánicas/química , Resonancia por Plasmón de Superficie , Neoplasias/terapia , Línea Celular Tumoral
6.
Microbiome ; 11(1): 209, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749663

RESUMEN

BACKGROUND: The existence of the gut microbiota produces an "individual drug reaction." As members of the intestinal microbiota, probiotics, although they have prebiotic functions, may accelerate the degradation of drugs, thereby affecting drug efficacy. Lovastatin is one of the well-recognized lipid-lowering drugs. Its main action site is the liver. Therefore, if it is degraded in advance by gastrointestinal probiotics, its efficacy may be reduced. RESULTS: Here, we designed a two-stage experiment in vitro and in vivo to explore the degradation of lovastatin by probiotics. In vitro, the degradation of lovastatin by 83 strains of Lactiplantibacillus plantarum and the "star strain" Lacticaseibacillus paracasei strain Shirota was investigated by high-performance liquid chromatography (HPLC). The results showed that probiotics could degrade lovastatin to varying degrees. Subsequently, we selected Lactiplantibacillus plantarum A5 (16.87%) with the strongest ability to degrade lovastatin, Lactiplantibacillus plantarum C3 (4.61%) with the weakest ability to degrade lovastatin and Lacticaseibacillus paracasei strain Shirota (17.6%) as representative probiotics for in vivo experiments. In vivo, the therapeutic effect of lovastatin combined with probiotics on golden hamsters with mixed hyperlipidemia was evaluated by measuring blood indicators, intestinal microbiota metagenomic sequencing, and the liver transcriptome. The results showed that the intake of probiotics did not affect the efficacy of lovastatin and could slow the inflammatory reaction of the liver. CONCLUSIONS: The supplementation of probiotics produced beneficial metabolites in the intestine by promoting beneficial microbes. Intestinal metabolites affected the expression of the liver genes through the gut-liver axis, increased the relative content of the essential amino acids, and finally improved the liver inflammatory response of the host. This study aims to reveal the impact of probiotics on the human body from a unique perspective, suggesting the impact of taking probiotics while taking drugs. Video Abstract.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Microbioma Gastrointestinal , Probióticos , Animales , Cricetinae , Humanos , Lovastatina/farmacología , Hígado , Cromatografía Líquida de Alta Presión
7.
Anal Methods ; 15(31): 3893-3901, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37519193

RESUMEN

The mercuric ion (Hg2+) is a hazardous pollutant that is widely distributed in living organisms, foods, and environments with highly toxic and bio-accumulative properties. In the present study, a fluorescent probe based on aptamer gold nanoclusters (apt-AuNCs) was prepared for the ultrasensitive detection of Hg2+ in food. The principle underlying the prepared probe was the quenching of the fluorescence of apt-AuNCs in the presence of Hg2+ due to the strong metallophilic interactions between the 5d10 centers of Hg2+ and Au+. Under optimal conditions, the proposed fluorescent probe exhibited a linear relationship with Hg2+ concentration within the range of 2-200 nM (R2 = 0.9960). In addition, the limit of detection (LOD) was 0.0158 nM, which is below the Chinese standard value of 25 nM for Hg2+ in food. Furthermore, the apt-AuNCs were applied to detect Hg2+ in spinach and crawfish samples, with recovery percentages of 91.99%∼108.06%, meaning that apt-AuNCs could be used as a promising probe to detect Hg2+ in complex food samples.


Asunto(s)
Mercurio , Nanopartículas del Metal , Colorantes Fluorescentes , Oro , Espectrometría de Fluorescencia
8.
Autism Res ; 16(5): 1024-1039, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020099

RESUMEN

Emotion cognitive remediation is a critical component of social skills training for children with autism spectrum disorder (ASD). Visual perception of emotions is highly correlated with the intensity and sequence of presented emotions. However, few studies examined the effect of presentation sequence and intensity on emotion perception. The present study examined the gaze patterns of children with ASD in receiving different sequences of emotion presentation using eye-tracking technologies. Gaze patterns of ecologically-valid video clips of silent emotion stimuli by 51 ASD children and 34 typically developing (TD) children were recorded. Results indicated that ASD and TD children showed opposite visual fixation during different intensity presentation modes: children with ASD showed better emotion perception with a weak-to-strong emotion sequence when presented. The visual reductions in emotion perception in children with ASD may due to different perceptual threshold to emotional intensity. The extent of the reductions could be related to an individual's Personal-Social ability. The present study supports the importance of intensity of emotions and the order at which the emotional stimuli were presented in yielding better emotion perceptions in children with ASD, suggesting that the order of emotion presentation may potentially influence emotion processing during ASD rehabilitation. It is anticipated that the present findings could bring more insights to clinicians for intervention planning in the future.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/psicología , Tecnología de Seguimiento Ocular , Emociones , Fijación Ocular , Percepción Visual
9.
J Colloid Interface Sci ; 641: 366-375, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36940593

RESUMEN

Transition metal oxides as potentialanodes of lithium-ion batteries (LIBs) possess high theoretical capacity but suffer from large volume expansion and poor conductivity. To overcome these drawbacks, we designed and fabricated polyphosphazene-coated yolk-shelled CoMoO4 nanospheres, in which polyphosphazene with abundant C/P/S/N species was readily converted into carbon shells and provided P/S/N dopants. This resulted in the formation of P/S/N co-doped carbon-coated yolk-shelled CoMoO4 nanospheres (PSN-C@CoMoO4). The PSN-C@CoMoO4 electrode exhibits superior cycle stability of 439.2 mA h g-1at 1000 mA g-1after 500 cycles and rate capability of 470.1 mA h g-1at 2000 mA g-1. The electrochemical and structural analyses reveal that PSN-C@CoMoO4 with yolk-shell structure, coated with carbon and doped with heteroatom not only greatly enhances the charge transfer rate and reaction kinetics, but also efficiently buffers the volume variation upon lithiation/delithiation cycling. Importantly, the use of polyphosphazene as coating/doping agent can be a general strategy for developing advanced electrode materials.

10.
Environ Pollut ; 324: 121326, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813096

RESUMEN

Microplastics have emerged as an important threat to terrestrial ecosystems. To date, little research has been conducted on investigating the effects of microplastics on ecosystem functions and multifunctionality. In this study, we conducted the pot experiments containing five plant communities consisting of Phragmites australis, Cynanchum chinense, Setaria viridis, Glycine soja, Artemisia capillaris, Suaeda glauca, and Limonium sinense and added polyethylene (PE) and polystyrene (PS) microbeads to the soil (contained a mixture of 1.5 kg loam and 3 kg sand) at two concentrations of 0.15 g/kg (lower concentration, hereinafter referred to as PE-L and PS-L) and 0.5 g/kg (higher concentration, hereinafter referred to as PE-H and PS-H) to explore the effects of microplastics on total plant biomass, microbial activity, nutrient supply, and multifunctionality. The results showed that PS-L significantly decreased the total plant biomass (p = 0.034), primarily by inhibiting the growth of the roots. ß-glucosaminidase decreased with PS-L, PS-H, and PE-L (p < 0.001) while the phosphatase was noticeably augmented (p < 0.001). The observation suggests that the microplastics diminished the nitrogen requirements and increased the phosphorus requirements of the microbes. The decrease in ß-glucosaminidase diminished ammonium content (p < 0.001). Moreover, PS-L, PS-H, and PE-H reduced the soil total nitrogen content (p < 0.001), and only PS-H considerably reduced the soil total phosphorus content (p < 0.001), affecting the ratio of N/P markedly (p = 0.024). Of interest, the impacts of microplastics on total plant biomass, ß-glucosaminidase, phosphatase, and ammonium content did not become larger at the higher concentration, and it is observable that microplastics conspicuously depressed the ecosystem multifunctionality, as microplastics depreciated single functions such as total plant biomass, ß-glucosaminidase, and nutrient supply. In perspective, measures to counteract this new pollutant and eliminate its impact on ecosystem functions and multifunctionality are necessary.


Asunto(s)
Ecosistema , Suelo , Poaceae , Microplásticos , Plásticos , Microesferas , Poliestirenos , Polietileno , Nutrientes , Nitrógeno , Fósforo
11.
Pediatr Investig ; 6(4): 302-304, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36582268
12.
Artículo en Inglés | MEDLINE | ID: mdl-35994557

RESUMEN

Exoskeleton robot is an essential tool in active rehabilitation training for patients with lower limb motor dysfunctions. Accurate and real-time recognition in human motion intention is a great challenge in exoskeleton robot, which can be implemented by continues estimation of human joint angles. In this study, we innovatively proposed a novel feature-based convolutional neural network-bi-directional long-short term memory network (CNN-BiLSTM) model to predict the knee joint angles more accurately and in real time. We validated our method on a public dataset, including surface electromyography(sEMG) and inertial measurement unit (IMU) data of 10 healthy subjects during normal walking. Initially, features extraction from each modal data achieved feature-level fusion. Then the importance of each sEMG and IMU signal feature for knee joint angle prediction was quantified by ensemble feature scorer (EFS) and the number of features required for prediction while ensuring accuracy was simplified by profile likelihood maximization (PLM) algorithm. Finally, the CNN-BiLSTM model was created by using the determined simplest features to further fuse the spatio-temporal correlation of signals. The results indicated that the EFS and PLM algorithm could remove the feature redundancy perfectly and estimation performance would become better when bi-modal gait data were fused. For the estimation performance, the average root mean square error (RMSE), adjusted [Formula: see text] and pearson correlation coefficient (CC) of our algorithm were 4.07, 0.95, and 0.98, respectively, which was better than CNN, BiLSTM and other three traditional machine learning methods. In addition, the model test time was 62.47 ± 0.29 ms, which was less than the predicted horizon of 100 ms. The real-time performance and accuracy are satisfactory. Compared with previous works, our method has great advantages in feature selection and model design, which further improves the prediction accuracy. These promising results demonstrate that the proposed method has considerable potential to be applied to exoskeleton robot control.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Electromiografía/métodos , Marcha , Humanos , Articulación de la Rodilla
13.
Front Psychiatry ; 13: 870374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757207

RESUMEN

Abnormal alterations in enzymes functioned in sialic acid modifications may be associated with ASD. In order to study the differences in peripheral blood sialidase (neuraminidase 1; NEU1) mRNA expression between autism spectrum disorder (ASD) children and healthy control, and to examine the correlation between NEU1 mRNA expression and the main behavioral phenotypes in children with ASD, we performed RT-qPCR to measure NEU1 mRNA expression in peripheral blood of 42 children with ASD and 42 healthy controls. In addition, we used the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) to measure and evaluate the behavioral phenotypes of children with ASD. Our results showed that NEU1 mRNA in the ASD group was significantly higher than in the control group (P < 0.0001). In addition, the ADOS-2 diagnostic scores of 42 children with ASD were correlated with their NEU1 mRNA expression results (R = 0.344, P = 0.0257). Moreover, in general, NEU1 mRNA expression was also positively correlated with the Social Affect (SA) of ADOS-2 (R = 0.3598, P = 0.0193) but not with the Restricted and Repetitive Behavior (RRB) (R = 0.15, P = 0.3432). Our results indicated that sialidase NEU1 mRNA was significantly increased in children with ASD, and its expression was correlated with the SA of children with ASD, which suggested that sialidase NEU1 may affect the SA of ASD. Our data highlighted the potential of NEU1 expression change may play an important role in ASD disease and lay the foundation for further studies on the relationship between NEU1 and ASD.

14.
Stem Cell Res Ther ; 13(1): 272, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729638

RESUMEN

BACKGROUND: Inflammatory bowel diseases, consisting of Crohn's disease and ulcerative colitis constitute chronic inflammatory conditions that may compromise the whole gastrointestinal tract as well as the colonic mucosa. Currently, there are no curative interventions for IBD, and all available treatments have side effects that limit their use. Adipose-derived stem cell (ADSC) treatment is a prospective treatment option for IBD. Previous findings indicated that ginsenoside (Rg1) dampened inflammatory diseases like colitis by inhibiting the binding of LPS to TLR4 on macrophages and restoring the Th17/Treg ratio. The purpose of this work was to investigate whether Rg1 can increase the influence of ADSC in a mouse model of colitis triggered by dextran sulfate sodium (DSS). METHODS: ADSC was intravenously inoculated into mice with DSS-triggered colitis, while Rg1 was delivered via oral gavage. Colon inflammation was assessed via body weight, colon length along with H&E staining. Serum cytokine levels were measured using ELISA. Besides, flow cytometry was adopted to determine the percentage, as well as FMI of immune cells in the spleen. The effects of simultaneous Rg1 and ADSC treatment on TLR4-MyD88 signaling were assessed via immunofluorescence. RESULTS: Rg1 and ADSC effectively alleviated the impacts of colon inflammation, weight loss, and colon length reduction along with histological score. Treatment with Rg1 and ADSC reduced serum levels of the proinflammatory cytokines, IL-1ß, TNF-α, IL-6, IL-4, and IL-17A and upregulated the level of immunosuppressive cytokine, IL-10. Compared with ADSC or Rg1 alone, combined treatment with Rg1 and ADSC significantly improved the structure of microbial community. Additionally, treatment with Rg1 plus ADSC selectively elevated the level of splenic regulatory T (Treg) cells and downregulated the proportion of T helper type 17 (Th17) cells, indicating restoration of intestinal homeostasis. Besides, we established that the combination of ADSC + Rg1 restored immunological balance more effectively than either ADSC or Rg1 alone, illustrating that Rg1's modulatory function on the gut microbiota may boost the impact of ADSCs in restoration of the immune balance. ADSC combined with Rg1 might downregulate the expression of TLR4 and MyD88, thereby suppressing TLR4-MyD8 signaling. The immunofluorescence results also suggested that co-therapy with Rg-1 and ADSC may optimize treatment strategies of IBD. CONCLUSIONS: Here, we find that the combination of Rg1 and ADSC alleviates DSS-induced colitis in a mouse model more efficiently than ADSC alone, indicating that Rg1 enhances the effect of ADSC against colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/terapia , Colitis Ulcerosa/patología , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Estudios Prospectivos , Células Madre/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
15.
J Mol Neurosci ; 72(6): 1274-1292, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35412111

RESUMEN

The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Extracellular vesicles (EVs) are cell-derived nano-sized vesicles, carrying nucleic acids, proteins, lipids, and other bioactive substances. As reported, serum neural cell adhesion molecule L1 (L1CAM)-captured EVs (LCEVs) can provide reliable biomarkers for neurological diseases; however, little is known about the LCEVs in children with ASD. The study enrolled 100 children with ASD (2.5-6 years of age; 90 males) and 60 age-matched TD children (54 males) as control. The serum sample was collected and pooled into five ASD subgroups and three TD subgroups (n = 20). LCEVs were isolated and characterized meticulously. Whole-transcriptome of LCEVs was analyzed by lncRNA microarray and RNA-sequencing. All raw data was submitted on GEO Profiles, and GEO accession numbers is GSE186493. RNAs expressed differently in LCEVs from ASD sera vs. TD sera were screened, analyzed, and further validated. A total of 1418 mRNAs, 1745 lncRNAs, and 11 miRNAs were differentially expressed, and most of them were downregulated in ASD. Most RNAs were involved in neuron- and glycan-related networks implicated in ASD. The levels of EDNRA, SLC17A6, HTR3A, OSTC, TMEM165, PC-5p-139289_26, and hsa-miR-193a-5p were validated in at least 15 ASD and 15 TD individual serum samples, which were consistent with the results of transcriptome analysis. In conclusion, whole-transcriptome analysis of serum LCEVs reveals neural and glycosylation changes in ASD, which may help detect predictive biomarkers and molecular mechanisms of ASD, and provide reference for diagnoses and therapeutic management of the disease.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de Transporte de Catión , Vesículas Extracelulares , MicroARNs , Molécula L1 de Adhesión de Célula Nerviosa , Anciano de 80 o más Años , Antiportadores/genética , Antiportadores/metabolismo , Biomarcadores/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Niño , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica , Glicosilación , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética
16.
Comput Math Methods Med ; 2022: 1217003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341007

RESUMEN

This research was aimed at investigating the artificial intelligence (AI) segmentation algorithm-based multislice spiral computed tomography (MSCT) in the diagnosis of liver cirrhosis and liver fibrosis. Besides, it was aimed at providing new methods for the diagnosis of liver cirrhosis and liver fibrosis. All patients were divided into the control group, mild liver fibrosis group, and significant liver fibrosis group. A total of 112 patients were included, with 40 cases in the mild liver fibrosis group, 48 cases in the significant liver fibrosis group, and 24 cases who underwent computed tomography (CT) examination in the control group. In the research, deconvolution algorithm of AI segmentation algorithm was adopted to process the images. The average hepatic arterial fraction (HAF) values of patients in the control group, mild liver fibrosis group, and severe liver fibrosis group were 17.59 ± 10.03%, 18.23 ± 5.57%, and 20.98 ± 6.63%, respectively. The average MTT values of patients in the control group, mild liver fibrosis group, and severe liver fibrosis group were 12.69 ± 1.78S, 12.53 ± 2.05S, and 12.04 ± 1.57S, respectively. The average blood flow (BF) values of patients in the control group, mild liver fibrosis group, and severe liver fibrosis group were 105.68 ± 15.57 mL 100 g-1·min-1, 116.07 ± 16.5 mL·100 g-1·min-1, and 110.39 ± 16.32 mL·100 g-1·min-1, respectively. Besides, the average blood volume (BV) values of patients in the control group, mild liver fibrosis group, and significant liver fibrosis group were 15.69 ± 4.35 mL·log-1, 16.97 ± 2.68 mL·log-1, and 16.11 ± 4.87 mL·100 g-1, respectively. According to statistics, the differences among the average HAF, MTT, BF, and BV values showed no statistical meaning. AI segmentation algorithm-based MSCT imaging could promote the diagnosis of liver cirrhosis and liver fibrosis effectively and offer new methods to clinical diagnosis of liver cirrhosis and liver fibrosis.


Asunto(s)
Inteligencia Artificial , Cirrosis Hepática , Algoritmos , Humanos , Cirrosis Hepática/diagnóstico por imagen , Tomografía Computarizada Espiral/métodos
17.
BMC Genomics ; 23(1): 29, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991475

RESUMEN

BACKGROUND: Brassinosteroids (BRs) are a type of sterol plant hormone that play an important role in various biochemical and physiological reactions such as promoting cell growth, increasing biomass, and improving stress resistance. RESULTS: To investigate the regulatory and molecular mechanism of BRs on the growth and development of tea plants (Camellia sinensis L.), changes in cell structure and gene expression levels of tea leaves treated with exogenous BRs were analyzed by electron microscopy and high-throughput Illumina RNA-Seq technology. The results showed that the number of starch granules in the chloroplasts and lipid globules increased and thylakoids expanded after BR treatment compared with the control. Transcriptome analysis showed that in the four BR treatments (CAA: BR treatment for 3 h, CAB: BR treatment for 9 h, CAC: BR treatment for 24 h, and CAD: BR treatment for 48 h), 3861 (1867 upregulated and 1994 downregulated), 5030 (2461 upregulated and 2569 downregulated), 1626 (815 upregulated and 811 downregulated), and 2050 (1004 upregulated and 1046 downregulated) differentially expressed genes were detected, respectively, compared with CAK (BR treatment for 0 h). Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, metabolic pathway enrichment analysis showed that the differentially expressed genes of CAA vs. CAK, CAB vs. CAK, CAC vs. CAK, and CAD vs. CAK significantly enriched the functional categories of signal transduction, cell cycle regulation, and starch, sucrose, and flavonoid biosynthesis and metabolism pathways. We also found that after spraying BR, the key genes for caffeine synthesis were downregulated. The results of qRT-PCR coincided with the findings of transcriptomic analysis. CONCLUSIONS: The present study improved our understanding of the effects of BRs on the growth and development of tea leaves and laid the foundation for the in-depth analysis of signal transduction pathways of BRs in tea leaves.


Asunto(s)
Camellia sinensis , Brasinoesteroides , Camellia sinensis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Esteroides Heterocíclicos , , Transcriptoma
18.
J Agric Food Chem ; 69(37): 11142-11150, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34514782

RESUMEN

Tea is the most consumed beverage worldwide, and l-theanine in tea leaves significantly affects their flavor and market quality. We have developed and validated a fast and reliable gas chromatographic method with flame ionization detection (GC-FID) to quantify l-theanine after its extraction from Camellia sinensis (tea plant) and derivatization. The procedure was completed in 40 min, from extraction to chromatographic analysis, with a recovery rate of more than 93% and allowing a high sample throughput. The GC-FID intraday precision was within 0.57-2.28%, while the interday precision ranged from 1.57 to 13.48%. The intraday accuracy ranged from -6.84 to 5.26%, while the interday accuracy ranged from -1.08 to 3.12%. The limit of detection was 2.28 µg/mL, and the limit of quantification was 6.47 µg/mL. The GC-FID method was validated by high-performance liquid chromatography with UV detection (HPLC-UV) and was used to investigate the biosynthesis and regulation of l-theanine in tea plants. We found that plants fed with ethylamine significantly increased l-theanine concentrations in roots, while exogenous supplementation of glutamic acid, carbamide, and glutamine did not significantly affect the l-theanine level in roots. Our results also indicated that roots were not indispensable for the biosynthesis of l-theanine, which was detected in undifferentiated embryonic calluses in concentrations (g/100 g dry weight) as high as in leaves of whole plants (1.67 and 1.57%, respectively) and without any exogenous theanine precursor supplementation.


Asunto(s)
Camellia sinensis , Glutamatos , Ácido Glutámico , Hojas de la Planta , Proteínas de Plantas ,
19.
Molecules ; 26(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34577161

RESUMEN

Removing toxic heavy metal species from aqueous solutions is a point of concern in our society. In this paper, a promising biomass adsorbent, the modified waste shrimp shell (MS), for Cu (II) removal was successfully prepared using a facile and simple one-step modification, making it possible to achieve high-efficiency recycling of the waste NaOH solution as the modification agent. The outcome shows that with the continuous increase in pH, temperature and ion concentration, the adsorption effect of MS on Cu (II) can also be continuously improved. Adsorption isotherm and adsorption kinetics were fitted with the Langmuir isotherm model and the pseudo-second-order model, respectively, and the maximum adsorption capacity of Cu (II) as obtained from the Langmuir isotherm model fitting reached 1.04 mmol/g. The systematic desorption results indicated that the desorption rate of Cu (II) in the MS could reach 100% within 6 min, where HNO3 is used as the desorption agent. Moreover, experiments have proven that after five successive recycles of NaOH as a modifier, the adsorption capacity of MS on Cu (II) was efficient and stable, maintaining tendency in 0.83-0.85 mmol/g, which shows that waste NaOH solution can be used as a modification agent in the preparation of waste shrimp shell adsorbent, such as waste NaOH solution produced in industrial production, thereby making it possible to turn waste into renewable resources and providing a new way to recycle resources.


Asunto(s)
Cobre/química , Penaeidae/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Animales , Cationes Bivalentes , Cobre/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Concentración Osmolar , Penaeidae/anatomía & histología , Mariscos , Hidróxido de Sodio/química , Temperatura , Termodinámica , Contaminantes Químicos del Agua/aislamiento & purificación
20.
Neuropsychiatr Dis Treat ; 17: 2451-2463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335026

RESUMEN

OBJECTIVE: This study aimed to analyze the social-emotional behaviors of Chinese toddlers with cerebral palsy and to identify the risk factors associated with these behaviors. METHODS: A total of 300 Chinese toddlers and their parents were recruited in this study. A Chinese version of the Infant-Toddler Social-Emotional Assessment was used to assess the children and basic information and clinical data were collected using an author-designed questionnaire. The patients were also assessed using a coping style questionnaire and the hospital anxiety and depression scale. Multiple logistic regression analysis was performed to identify risk factors. RESULTS: The scores of the externalizing and competence domains for Chinese toddlers with cerebral palsy at different ages were lower compared to healthy children of the same age and gender (p<0.05). For the boys with cerebral palsy aged between 12-17 and 18-23 months, the scores of the internalizing and dysregulation domains were significantly lower compared to the national normal (p<0.01). The effect of perinatal factors on the externalizing and competence domains was more significant compared to other domains, whilst the coping style of the parents significantly affected the dysregulation domain (p=0.001). Multivariate analysis showed that the parental emotional state, education level, coping style and perinatal factors were closely associated with the social-emotional problems of children with cerebral palsy. CONCLUSION: Children with cerebral palsy are more likely to have behavioral, emotional, and psychiatric issues that are mostly ignored. These children may benefit from early screening and intervention for risk factors to improve rehabilitation and long-term prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...